DEFRA

METHOD FOR CONVERTING THE
UK ROAD TRAFFIC NOISE INDEX L_{A10,18h} TO
THE EU NOISE INDICES FOR
ROAD NOISE MAPPING

A Report prepared by

TRL AND Casella Stanger

Crowthorne House,
Nine Mile Ride,
Wokingham,
Berkshire, RG40 3GA

30, Great Guildford Street
London
SE1 0ES

Prepared By: P.G. Abbott (TRL) & S.J.Stephenson,
Approved By: S.W.Turner, MA, MSc, FIOA,

Document Ref: st/05/91/AGG04442
Date: 24th January 2006
Defra – Converting $L_{A10,18h}$ to L_{den} etc

DOCUMENT CONTROL SHEET

Client name: Defra

Job Number: AGG04442

Document Status and Approval Schedule

<table>
<thead>
<tr>
<th>Issue</th>
<th>Status</th>
<th>Description</th>
<th>Prepared by</th>
<th>Approved by</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Initial Draft</td>
<td>First Draft – 25th July 2005</td>
<td>Phil Abbott & Simon Stephenson</td>
<td>Stephen Turner</td>
</tr>
<tr>
<td>2</td>
<td>Final Draft</td>
<td>Final Draft incorporating client comment 11/10/05</td>
<td>Phil Abbott & Simon Stephenson</td>
<td>Stephen Turner</td>
</tr>
<tr>
<td>3</td>
<td>Final</td>
<td>Final Version 1/11/05</td>
<td>Phil Abbott & Simon Stephenson</td>
<td>Stephen Turner</td>
</tr>
<tr>
<td>4</td>
<td>Final</td>
<td>Final version following public comment 24/1/06</td>
<td>Phil Abbott & Simon Stephenson</td>
<td>Stephen Turner</td>
</tr>
</tbody>
</table>

Disclaimer

This Report was completed by TRL and Casella Stanger on the basis of a defined programme of work and terms and conditions agreed with the Client. We confirm that in preparing this Report we have exercised all reasonable skill and care taking into account the project objectives, the agreed scope of works, prevailing site conditions and the degree of manpower and resources allocated to the project.

TRL and Casella Stanger accepts no responsibility to any parties whatsoever, following the issue of the Report, for any matters arising outside the agreed scope of the works.

This Report is issued in confidence to the Client and TRL & Casella Stanger have no responsibility to any third parties to whom this Report may be circulated, in part or in full, and any such parties rely on the contents of the report solely at their own risk.

Unless specifically assigned or transferred within the terms of the agreement, the consultant asserts and retains all Copyright, and other Intellectual Property Rights, in and over the Report and its contents.

Any questions or matters arising from this Report should be addressed in the first instance to the Project Manager.
CONTENTS

<table>
<thead>
<tr>
<th></th>
<th>Introduction</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Revised Method</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>References</td>
<td>9</td>
</tr>
</tbody>
</table>
1.0 Introduction

1.1 The Environmental Noise Directive [Ref. 1] requires member states to produce noise exposure information in the form of strategic noise maps utilising common noise indicators (referred to as EU Noise Indices). The Directive requires the information to be presented in terms of the L_{den} and L_{night} indices. For road traffic noise, it is also proposed to obtain information in terms of the following supplementary noise indicators: $L_{A10,18h}$ (06.00-24.00), $L_{Aeq,12h}$ (07.00-19.00), known as L_{day}, $L_{Aeq,4h}$ (19.00-23.00), known as $L_{evening}$, and $L_{Aeq,16h}$ (07.00-23.00).

1.2 The national method for predicting road traffic noise is described in the publication Calculation of Road Traffic Noise (CRTN) [Ref. 2]. The noise index derived from this method (L_{A10}) is, however, different from the main indices required by the Directive. Defra therefore commissioned TRL Limited to advise on the development of an interim computation method for use in the UK, which would comply with the Directive for noise mapping purposes [Ref. 3]. TRL suggested that, for UK conditions, the best interim approach is to adapt CRTN by applying an 'end correction' to obtain the relevant EU indices from calculated values of L_{A10}.

1.3 Subsequent work has identified some issues with the originally proposed CRTN back-end correction, referred to as Method 3 in the TRL report. The TRL method took into account that the road network is divided into acoustically homogenous segments, according to the procedures set out in CRTN. However, some commercially available software packages divide the road network into a larger number of segments than required under the CRTN method. For the method to be consistent, dividing the road into a number of smaller segments, calculating the contribution from each segment and then combining all the contributions together to provide the total noise at a receptor, should provide the same result. However, if the $L_{A10,18h}$ noise levels from each of the smaller segments are converted to EU indices separately and then combined to provide the total, inconsistencies in the results could occur.
1.4 Further work was carried out by TRL to review Method 3 and a revised methodology has been produced. This document details the revised procedure to be used when applying the Directive.
2.0 Revised Method

2.1 It is recommended that the following procedure is adopted in the UK as an interim measure to calculate the following indices for road traffic noise: L_{den}, L_{day}, $L_{evening}$ and L_{night}.

i. Figure 1, overleaf, shows the flow chart of the process to be used for converting the UK noise index $L_{A10,18h}$ to EU indices. The flow chart shows that, after dividing the road scheme into a number of different segments, each segment is identified as either non-motorway or motorway depending on the segmented road type.

ii. For each segment, the noise level, $L_{A10,18h}$ is calculated using CRTN.

iii. For each road type, the combined noise level, $L_{A10,18h}$ is calculated and, using the appropriate regression equations (Equations 1 – 6, below), the indices L_{day}, $L_{evening}$ and L_{night} are calculated.

For non-motorway roads:

\[
L_{day} = 0.95 \times L_{A10,18h} + 1.44 \text{ dB} \quad (\text{Equation 1})
\]

\[
L_{evening} = 0.97 \times L_{A10,18h} - 2.87 \text{ dB} \quad (\text{Equation 2})
\]

\[
L_{night} = 0.90 \times L_{A10,18h} - 3.77 \text{ dB} \quad (\text{Equation 3})
\]

For motorways:

\[
L_{day} = 0.98 \times L_{A10,18h} + 0.09 \text{ dB} \quad (\text{Equation 4})
\]

\[
L_{evening} = 0.89 \times L_{A10,18h} + 5.08 \text{ dB} \quad (\text{Equation 5})
\]

\[
L_{night} = 0.87 \times L_{A10,18h} + 4.24 \text{ dB} \quad (\text{Equation 6})
\]
iv. For each index, the contribution from the non-motorway and motorway sources are combined to give the total value for the whole road network together with the combined $L_{A10,18h}$ value.

v. The resulting values of L_{day}, L_{evening} and L_{night} are used to calculate L_{den} using the formula shown in Figure 1. Similarly, the noise level $L_{Aeq,16h}$ (07:00 to 23:00) is calculated using the formula shown in Figure 1.

1 3 lane dual carriageway roads which are designed to be freely flowing (i.e. do not have frequent signalled junctions) should be regarded as motorways regardless of their actual classification.
Figure 1 - Process for Converting $L_{A10,18h}$ to EU Indicators

Divide Road into Segments

Is road segment motorway or non motorway?

Basic Noise Level $L_{A10,18h}$

Propagation

Site Layout

Any more segments?

Yes

Non-Motorway

Combine segment contributions $L_{A10,18h}$ from all non-motorway segments

Apply Method 3 for non-motorway roads

Convert $L_{A10,18h}$ to EU indices: L_{day}, $L_{evening}$ and L_{night}

Motorway

Basic Noise Level $L_{A10,18h}$

Propagation

Site Layout

Any more segments?

Yes

Combine segment contributions $L_{A10,18h}$ from all motorway segments

Apply Method 3 for motorway roads

Convert $L_{A10,18h}$ to EU indices: L_{day}, $L_{evening}$ and L_{night}

Combine contributions from both motorway and non-motorway sources

To give overall $L_{A10,18h}$, L_{day}, $L_{evening}$ and L_{night} values

\[
L_{den} = 10 \log_{10} \left[\frac{1}{24} \left[2 \times 10^{L_{day}/10} + 4 \times 10^{(5 + L_{evening})/10} + 8 \times 10^{(10 + L_{night})/10} \right] \right] dB
\]

\[
L_{Aeq,16h} = 10 \log_{10} \left[\frac{1}{16} \left[2 \times 10^{L_{day}/10} + 4 \times 10^{L_{evening}/10} \right] \right] dB
\]
3.0 References

 http://www.defra.gov.uk/environment/noise/research/crtn/index.htm